

QtUtils

QtUtils is a Python library that provides convenient tools for Python Developers creating applications using the PyQt/PySide widget library.

Utilities include those providing thread-safe access to Qt objects, simplified QSettings storage, and dynamic widget promotion when loading UI files.
QtUtils also includes the Fugue icon set, free to use with attribution to Yusuke Kamiyamane [http://p.yusukekamiyamane.com/].

Note

qtutils 3.0 dropped support for Python 2.7, PyQt4 and PySide. If you need to use these platforms, you may use qtutils 2.3.2 or earlier.
qtutils 2.3.2 provides an abstraction layer for PySide/PyQt4 that matches the PyQt5 API.

Contents

	Installation

	Convenience functions for using Qt safely from Python threads

Installation

These installation instructions assume you already have Python installed. If you do not already have a copy of Python, we recommend you install Anaconda Python [https://www.continuum.io/downloads].

PyPi

To install qtutils from the Python Package Index run:

pip install qtutils

Upgrading qtutils with PyPI

To upgrade to the latest version of qtutils, run:

pip install -U qtutils

To upgrade to a specific version of qtutils (or, alternatively, if you wish to downgrade), run:

pip install -U qtutils==<version>

where <version> is replaced by the version you wish (for example pip install -U qtutils==2.3.2).

Anaconda

To install qtutils using conda run:

conda install -c labscript-suite qtutils

Note

The qtutils library is published on the labscript-suite anaconda cloud channel as it was created by labscript-suite developers for use in that software suite.

Upgrading qtutils with conda

To upgrade to the latest version of qtutils, run:

conda update -c labscript-suite qtutils

To upgrade to a specific version of qtutils (or, alternatively, if you wish to downgrade), run:

conda update -c labscript-suite qtutils=<version>

where <version> is replaced by the version you wish (for example conda update -c labscript-suite qtutils=3.0.0).

Development Version

To install latest development version, clone the GitHub repository [https://github.com/philipstarkey/qtutils] and run pip install . to install, or pip install -e . to install in ‘editable’ mode.

Convenience functions for using Qt safely from Python threads

QtUtils provides convenience functions for accessing Qt objects in a thread safe way.
Qt requires that all GUI objects exist in the MainThread and that access to these objects is only made from the MainThread (see Qt documentation [http://doc.qt.io/qt-5/threads-qobject.html]).
This, while understandable, imposes significant limits on Python applications where threading is easy.
While there are solutions using Qt signals, slots and a QThread, these require significant boiler plate code that we believe is unnecessary.

Note

There is some debate [https://stackoverflow.com/q/1595649] as to whether using Python threads with any part of the Qt library is safe, however this has been recently challenged [https://stackoverflow.com/a/49802578]. The QtUtils library only instantiates a QEvent and calls QCoreApplication.postEvent() from a Python thread. It seems likely that as long as the underlying Python threading implementation matches the underlying Qt threading implementation for your particular platform, that there is no issue with how we have written this library. While we have not observed any issues with our library (and we have used it extensively on Windows, OSX and Ubuntu), this does not mean all platforms will behave in the same way. If this matters to you, we suggest you confirm the underlying thread implementation for your build of Python and Qt.

Examples

We utilise the Qt event loop to execute arbitrary methods in the MainThread by posting a Qt event to the MainThread from a secondary thread.
QtUtils provides a function called inmain which takes a reference to a method to execute in the MainThread, followed by any arguments to be passed to the method.

from qtutils import inmain

This is equivalent to calling my_func(arg1, arg2, foo=7, bar='baz') in the MainThread
The calling thread will wait for the result to be returned before continuing
result = inmain(my_func, arg1, arg2, foo=7, bar='baz')

A call to inmain blocks the calling thread until the Qt event loop can process our message, execute the specified method and return the result.
For situations where you don’t wait to wait for the result, or you wish to do some other processing while waiting for the result, QtUtils provides the inmain_later function.
This works in the same way as inmain, but returns a reference to a Python Queue object immediately.
The result can be retrieved from this queue at any time, as shown in the following example:

from qtutils import inmain_later, get_inmain_result

This is equivalent to calling my_func(arg1, arg2, foo=7, bar='baz') in the MainThread
The calling thread will immediately continue execution, and the result of the function
will be placed in the queue once the Qt event loop has processed the request
queue = inmain_later(my_func, arg1, arg2, foo=7, bar='baz')
You can get the result (or raise any caught exceptions) by calling
Note that any exception will have already been raised in the MainThread
result = get_inmain_result(queue)

This of course works directly with Qt methods as well as user defined functions/methods.
For example:

from qtutils import inmain_later, get_inmain_result, inthread

def run_in_thread(a_line_edit, ignore=True):
 # set the text of the line edit, and wait for it to be set before continuing
 inmain(a_line_edit.setText, 'foobar')

 # Get the text of the line edit, and wait for it to be returned
 current_text = inmain(a_line_edit.text)

 # queue up a call to deselect() and don't wait for a result to be returned
 inmain_later(a_line_edit.deselect)

 # request the text of the line edit, but don't wait for it to be returned
 # However, this call is guaranteed to run AFTER the above inmain_later call
 queue = inmain_later(a_line_edit.text)

 # do some intensive calculations here

 # now get the text
 current_text = get_inmain_result(queue)
 print(current_text)

instantiate a QLineEdit
This object should only be accessed from the MainThread
my_line_edit = QLineEdit()

starts a Python thread (in daemon mode)
with target run_in_thread(my_line_edit, ignore=False)
thread = inthread(run_in_thread,my_line_edit,ignore=False)

As you can see, the change between a direct call to a Qt method, and doing it in a thread safe way, is very simple:

 a_line_edit.setText('foobar')
inmain(a_line_edit.setText,'foobar')

We also provide decorators so that you can ensure the decorated method always runs in the MainThread regardless of the calling thread.
This is particularly useful when combined with Python properties.

This function will always run in the MainThread, regardless of which thread calls it.
The calling thread will block until the function is run in the MainThread, and the result returned.
If called from the MainThread, the function is executed immediately as if you had called a_function()
@inmain_decorator(wait_for_return=True)
def a_function(a_line_edit):
 a_line_edit.setText('bar')
 return a_line_edit.text()

This function will always run in the MainThread, regardless of which thread calls it.
A call to this function will return immediately, and the function will be run at a
later time. A call to this function returns a python Queue.Queue() in which the result of
the decorated function will eventually be placed (or any exception raised)
@inmain_decorator(wait_for_return=False)
def another_function(a_line_edit):
 a_line_edit.setText('baz')

QtUtils also provides a convenience function for launching a Python thread in daemon mode.
inthread(target_method, arg1, arg2, ... kwarg1=False, kwargs2=7, ...)

Exception handling

Typically, exceptions are raised in the calling thread.
However, inmain_later and the associated decorator will also raise the exception in the MainThread as there is no guarantee that the results will ever be read from the calling thread.

Using QtUtils from the MainThread

When using inmain, or the associated decorator, QtUtils will bypass the Qt Event loop as just immediately execute the specified method.
This avoids the obvious deadlock where the calling code is being executed by the Qt event loop, and is now waiting for the Qt event loop to execute the next event (which won’t ever happen because it is blocked waiting for the next event by the calling code).
inmain_later still posts an event to the Qt event loop when used from the MainThread.
This is useful if you want to execute something asynchronously from the MainThread (for example, asynchronously update the text of a label) but we recommend you do not attempt to read the result of such a call as you risk creating a deadlock.

What if I want to wait for user input in a thread?

If you want your thread to wait for user input, then this is not the library for you!
We suggest you check out how to Wait in thread for user input from GUI [https://stackoverflow.com/a/35534047] for a Qt solution and/or Python threading events for a Python solution.

API reference

	
class qtutils.invoke_in_main.CallEvent(queue, exceptions_in_main, fn, *args, **kwargs)[source]

	An event containing a request for a function call.

	
class qtutils.invoke_in_main.Caller[source]

	An event handler which calls the function held within a CallEvent.

	
event(self, QEvent) → bool[source]

	

	
qtutils.invoke_in_main.get_inmain_result(queue)[source]

	Processes the result of qtutils.invoke_in_main.inmain_later().

This function takes the queue returned by inmain_later and blocks
until a result is obtained. If an exception occurred when executing the
function in the MainThread, it is raised again here (it is also raised in the
MainThread). If no exception was raised, the result from the execution of the
function is returned.

	Parameters

	queue – The Python Queue object returned by inmain_later

	Returns

	The result from executing the function specified in the call to
inmain_later

	
qtutils.invoke_in_main.inmain(fn, *args, **kwargs)[source]

	Execute a function in the main thread. Wait for it to complete
and return its return value.

This function queues up a custom QEvent to the Qt event loop.
This event executes the specified function fn in the Python
MainThread with the specified arguments and keyword arguments, and returns the result to the calling thread.

This function can be used from the MainThread, but such use will just directly call the function, bypassing the Qt event loop.

	Parameters

	
	fn – A reference to the function or method to run in the MainThread.

	*args – Any arguments to pass to fn when it is called from the
MainThread.

	**kwargs – Any keyword arguments to pass to fn when it is called
from the MainThread

	Returns

	The result of executing fn(*args, **kwargs)

	
qtutils.invoke_in_main.inmain_decorator(wait_for_return=True, exceptions_in_main=True)[source]

	A decorator which enforces the execution of the decorated thread to occur in the MainThread.

This decorator wraps the decorated function or method in either
qtutils.invoke_in_main.inmain() or
qtutils.invoke_in_main.inmain_later().

	Keyword Arguments

	
	wait_for_return – Specifies whether to use inmain (if
True) or inmain_later (if
False).

	exceptions_in_main – Specifies whether the exceptions should be raised
in the main thread or not. This is ignored if
wait_for_return=True. If this is
False, then exceptions may be silenced if
you do not explicitly use
qtutils.invoke_in_main.get_inmain_result().

	Returns

	The decorator returns a function that has wrapped the decorated function
in the appropriate call to inmain or inmain_later (if
you are unfamiliar with how decorators work, please see the Python
documentation).

When calling the decorated function, the result is either the result of
the function executed in the MainThread (if wait_for_return=True)
or a Python Queue to be used with
qtutils.invoke_in_main.get_inmain_result() at a later time.

	
qtutils.invoke_in_main.inmain_later(fn, *args, **kwargs)[source]

	Queue up the executing of a function in the main thread and return immediately.

This function queues up a custom QEvent to the Qt event loop.
This event executes the specified function fn in the Python
MainThread with the specified arguments and keyword arguments, and returns
a Python Queue which will eventually hold the result from the executing of
fn. To access the result, use qtutils.invoke_in_main.get_inmain_result().

This function can be used from the MainThread, but such use will just directly call the function, bypassing the Qt event loop.

	Parameters

	
	fn – A reference to the function or method to run in the MainThread.

	*args – Any arguments to pass to fn when it is called from the
MainThread.

	**kwargs – Any keyword arguments to pass to fn when it is called
from the MainThread

	Returns

	A Python Queue which will eventually hold the result
(fn(*args, **kwargs), exception) where
exception=[type,value,traceback].

	
qtutils.invoke_in_main.inthread(f, *args, **kwargs)[source]

	A convenience function for starting a Python thread.

This function launches a Python thread in Daemon mode, and returns a
reference to the running thread object.

	Parameters

	
	f – A reference to the target function to be executed in the Python thread.

	*args – Any arguments to pass to f when it is executed in the
new thread.

	**kwargs – Any keyword arguments to pass to f when it is executed
in the new thread.

	Returns

	A reference to the (already running) Python thread object

 Python Module Index

 q

 		 	

 		
 q	

 	[image: -]
 	
 qtutils	

 	
 	
 qtutils.invoke_in_main	

Index

 C
 | E
 | G
 | I
 | M
 | Q

C

 	
 	Caller (class in qtutils.invoke_in_main)

 	
 	CallEvent (class in qtutils.invoke_in_main)

E

 	
 	event() (qtutils.invoke_in_main.Caller method)

G

 	
 	get_inmain_result() (in module qtutils.invoke_in_main)

I

 	
 	inmain() (in module qtutils.invoke_in_main)

 	inmain_decorator() (in module qtutils.invoke_in_main)

 	
 	inmain_later() (in module qtutils.invoke_in_main)

 	inthread() (in module qtutils.invoke_in_main)

M

 	
 	
 module

 	qtutils.invoke_in_main

Q

 	
 	
 qtutils.invoke_in_main

 	module

 All modules for which code is available

	qtutils.invoke_in_main

 Source code for qtutils.invoke_in_main

###
#
invoke_in_main.py
#
Copyright 2013, Christopher Billington, Philip Starkey
#
This file is part of the qtutils project
(see https://github.com/philipstarkey/qtutils)
and is licensed under the 2-clause, or 3-clause, BSD License.
See the license.txt file in the root of the project
for the full license.
#
###

import sys
from queue import Queue

import threading
import functools

from qtutils.qt.QtCore import QEvent, QObject, QCoreApplication, QTimer, QThread

[docs]class CallEvent(QEvent):
 """An event containing a request for a function call."""
 EVENT_TYPE = QEvent.Type(QEvent.registerEventType())

 def __init__(self, queue, exceptions_in_main, fn, *args, **kwargs):
 QEvent.__init__(self, self.EVENT_TYPE)
 self.fn = fn
 self.args = args
 self.kwargs = kwargs
 self._returnval = queue
 # Whether to raise exceptions in the main thread or store them
 # for raising in the calling thread:
 self._exceptions_in_main = exceptions_in_main

[docs]class Caller(QObject):
 """An event handler which calls the function held within a CallEvent."""

[docs] def event(self, event):
 event.accept()
 exception = None
 try:
 result = event.fn(*event.args, **event.kwargs)
 except Exception:
 # Store for re-raising the exception in the calling thread:
 exception = sys.exc_info()
 result = None
 if event._exceptions_in_main:
 # Or, if nobody is listening for this exception,
 # better raise it here so it doesn't pass
 # silently:
 raise
 finally:
 event._returnval.put([result, exception])
 return True

caller = Caller()

[docs]def inmain(fn, *args, **kwargs):
 """Execute a function in the main thread. Wait for it to complete
 and return its return value.

 This function queues up a custom :code:`QEvent` to the Qt event loop.
 This event executes the specified function :code:`fn` in the Python
 MainThread with the specified arguments and keyword arguments, and returns the result to the calling thread.

 This function can be used from the MainThread, but such use will just directly call the function, bypassing the Qt event loop.

 Arguments:
 fn: A reference to the function or method to run in the MainThread.

 *args: Any arguments to pass to :code:`fn` when it is called from the
 MainThread.

 **kwargs: Any keyword arguments to pass to :code:`fn` when it is called
 from the MainThread

 Returns:
 The result of executing :code:`fn(*args, **kwargs)`
 """
 if threading.current_thread().name == 'MainThread':
 return fn(*args, **kwargs)
 return get_inmain_result(_in_main_later(fn, False, *args, **kwargs))

[docs]def inmain_later(fn, *args, **kwargs):
 """Queue up the executing of a function in the main thread and return immediately.

 This function queues up a custom :code:`QEvent` to the Qt event loop.
 This event executes the specified function :code:`fn` in the Python
 MainThread with the specified arguments and keyword arguments, and returns
 a Python Queue which will eventually hold the result from the executing of
 :code:`fn`. To access the result, use :func:`qtutils.invoke_in_main.get_inmain_result`.

 This function can be used from the MainThread, but such use will just directly call the function, bypassing the Qt event loop.

 Arguments:
 fn: A reference to the function or method to run in the MainThread.

 *args: Any arguments to pass to :code:`fn` when it is called from the
 MainThread.

 **kwargs: Any keyword arguments to pass to :code:`fn` when it is called
 from the MainThread

 Returns:
 A Python Queue which will eventually hold the result
 :code:`(fn(*args, **kwargs), exception)` where
 :code:`exception=[type,value,traceback]`.
 """
 return _in_main_later(fn, True, *args, **kwargs)

def _in_main_later(fn, exceptions_in_main, *args, **kwargs):
 """Asks the mainloop to call a function when it has time. Immediately
 returns the queue that was sent to the mainloop. A call to queue.get()
 will return a list of [result,exception] where exception=[type,value,traceback]
 of the exception. Functions are guaranteed to be called in the order
 they were requested."""
 queue = Queue()
 QCoreApplication.postEvent(caller, CallEvent(queue, exceptions_in_main, fn, *args, **kwargs))
 return queue

[docs]def get_inmain_result(queue):
 """ Processes the result of :func:`qtutils.invoke_in_main.inmain_later`.

 This function takes the queue returned by :code:`inmain_later` and blocks
 until a result is obtained. If an exception occurred when executing the
 function in the MainThread, it is raised again here (it is also raised in the
 MainThread). If no exception was raised, the result from the execution of the
 function is returned.

 Arguments:
 queue: The Python Queue object returned by :code:`inmain_later`

 Returns:
 The result from executing the function specified in the call to
 :code:`inmain_later`

 """
 result, exception = queue.get()
 if exception is not None:
 type, value, traceback = exception
 raise value.with_traceback(traceback)
 return result

[docs]def inthread(f, *args, **kwargs):
 """A convenience function for starting a Python thread.

 This function launches a Python thread in Daemon mode, and returns a
 reference to the running thread object.

 Arguments:
 f: A reference to the target function to be executed in the Python thread.

 *args: Any arguments to pass to :code:`f` when it is executed in the
 new thread.

 **kwargs: Any keyword arguments to pass to :code:`f` when it is executed
 in the new thread.

 Returns:
 A reference to the (already running) Python thread object
 """
 thread = threading.Thread(target=f, args=args, kwargs=kwargs)
 thread.daemon = True
 thread.start()
 return thread

[docs]def inmain_decorator(wait_for_return=True, exceptions_in_main=True):
 """ A decorator which enforces the execution of the decorated thread to occur in the MainThread.

 This decorator wraps the decorated function or method in either
 :func:`qtutils.invoke_in_main.inmain` or
 :func:`qtutils.invoke_in_main.inmain_later`.

 Keyword Arguments:
 wait_for_return: Specifies whether to use :code:`inmain` (if
 :code:`True`) or :code:`inmain_later` (if
 :code:`False`).

 exceptions_in_main: Specifies whether the exceptions should be raised
 in the main thread or not. This is ignored if
 :code:`wait_for_return=True`. If this is
 :code:`False`, then exceptions may be silenced if
 you do not explicitly use
 :func:`qtutils.invoke_in_main.get_inmain_result`.

 Returns:
 The decorator returns a function that has wrapped the decorated function
 in the appropriate call to :code:`inmain` or :code:`inmain_later` (if
 you are unfamiliar with how decorators work, please see the Python
 documentation).

 When calling the decorated function, the result is either the result of
 the function executed in the MainThread (if :code:`wait_for_return=True`)
 or a Python Queue to be used with
 :func:`qtutils.invoke_in_main.get_inmain_result` at a later time.

 """
 def wrap(fn):
 """A decorator which sets any function to always run in the main thread."""
 @functools.wraps(fn)
 def f(*args, **kwargs):
 if wait_for_return:
 return inmain(fn, *args, **kwargs)
 return _in_main_later(fn, exceptions_in_main, *args, **kwargs)
 return f
 return wrap

if __name__ == '__main__':
 import signal

 def loop(index):
 if index < 3:
 inthread(loop, index + 1)
 while True:
 # print('MyThread-%d: %s'%(index,str(QThread.currentThread())))
 # print('MyThread-%d: %s'%(index,threading.current_thread().name))
 # another_function(index)
 inmain(myFunction, index)

 def another_function(index):
 print('in thread-%d, running in thread: %s' % (index, threading.currentThread().name))

 def myFunction(index):
 print('from thread-%d, running in thread: %s' % (index, threading.currentThread().name))
 pass

 def myFunction2():
 print('from MainThread, running in thread: %s' % (threading.currentThread().name))
 QTimer.singleShot(0, lambda: inmain(myFunction2))

 qapplication = QCoreApplication(sys.argv)

 def sigint_handler(*args):
 qapplication.quit()

 signal.signal(signal.SIGINT, sigint_handler)

 thread = inthread(loop, 1)
 timer = QTimer.singleShot(0, lambda: inmain(myFunction2))
 qapplication.exec_()

 nav.xhtml

 Table of Contents

 		
 QtUtils

 		
 Installation

 		
 PyPi

 		
 Upgrading qtutils with PyPI

 		
 Anaconda

 		
 Upgrading qtutils with conda

 		
 Development Version

 		
 Convenience functions for using Qt safely from Python threads

 		
 Examples

 		
 Exception handling

 		
 Using QtUtils from the MainThread

 		
 What if I want to wait for user input in a thread?

 		
 API reference

_static/minus.png

_static/plus.png

_static/file.png

